3.871 \(\int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=194 \[ \frac {2 a}{d \left (a^2+b^2\right ) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {i \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tan ^{-1}\left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (-b+i a)^{3/2}}-\frac {i \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (b+i a)^{3/2}} \]

[Out]

-I*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a-b)^(3/
2)/d-I*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a+b
)^(3/2)/d+2*a/(a^2+b^2)/d/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.51, antiderivative size = 194, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {4241, 3567, 3616, 3615, 93, 203, 206} \[ \frac {2 a}{d \left (a^2+b^2\right ) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {i \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tan ^{-1}\left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (-b+i a)^{3/2}}-\frac {i \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (b+i a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2)),x]

[Out]

((-I)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]
])/((I*a - b)^(3/2)*d) - (I*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c +
d*x]]*Sqrt[Tan[c + d*x]])/((I*a + b)^(3/2)*d) + (2*a)/((a^2 + b^2)*d*Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x
]])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3567

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[((b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[
1/((m + 1)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[a*c^2*(m + 1) + a*
d^2*(n - 1) + b*c*d*(m - n + 2) - (b*c^2 - 2*a*c*d - b*d^2)*(m + 1)*Tan[e + f*x] - d*(b*c - a*d)*(m + n)*Tan[e
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d
^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegerQ[2*m]

Rule 3615

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[((a + b*x)^m*(c + d*x)^n)/(A - B*x), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 3616

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps

\begin {align*} \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx &=\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\tan ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx\\ &=\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\left (2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\frac {a}{2}-\frac {1}{2} b \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{a^2+b^2}\\ &=\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\left ((a-i b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 \left (a^2+b^2\right )}-\frac {\left ((a+i b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {1+i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 \left (a^2+b^2\right )}\\ &=\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\left ((a-i b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{(1+i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 \left (a^2+b^2\right ) d}-\frac {\left ((a+i b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{(1-i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 \left (a^2+b^2\right ) d}\\ &=\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\left ((a-i b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{1-(-i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\left (a^2+b^2\right ) d}-\frac {\left ((a+i b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{1-(i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\left (a^2+b^2\right ) d}\\ &=-\frac {i \tan ^{-1}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a-b)^{3/2} d}-\frac {i \tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a+b)^{3/2} d}+\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.84, size = 202, normalized size = 1.04 \[ \frac {\sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\sqrt [4]{-1} (b+i a) \tan ^{-1}\left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(a+i b)^{3/2}}+\frac {2 a \sqrt {\tan (c+d x)}}{(a+i b) \sqrt {a+b \tan (c+d x)}}}{a-i b}-\frac {(-1)^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(-a+i b)^{3/2}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2)),x]

[Out]

(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-(((-1)^(3/4)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sq
rt[a + b*Tan[c + d*x]]])/(-a + I*b)^(3/2)) + (((-1)^(1/4)*(I*a + b)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[
c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(a + I*b)^(3/2) + (2*a*Sqrt[Tan[c + d*x]])/((a + I*b)*Sqrt[a + b*Tan[c +
 d*x]]))/(a - I*b)))/d

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [C]  time = 1.38, size = 4817, normalized size = 24.83 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x)

[Out]

1/d*(-3*I*sin(d*x+c)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))
/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1
/2))^(1/2))*b^2*(((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/
2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+a*cos(d*x+c)+b*sin(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+
c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*a-I*sin(d*x+c)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)
-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/
2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*a^3*(((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)
/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+a*cos(d*x+c)+b*sin(d*x+c)-a)/(a^2+b^2)^(1
/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)-3*I*sin(d*x+c)*EllipticPi((((a
^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/
2))/(-I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*(((a^2+b^2)^(1/2)*sin(d
*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+a*cos(d
*x+c)+b*sin(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1
/2)*(a^2+b^2)^(1/2)*a*b+I*sin(d*x+c)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+
(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(-I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1
/2))/(a^2+b^2)^(1/2))^(1/2))*a^3*(((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2)
)/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+a*cos(d*x+c)+b*sin(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2
)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)+3*I*sin(d*x+c)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*
x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(-I*a+(a^2+b^2)^
(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*b^2*(((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+
c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+a*cos(d*x+c)+b*sin(d*x+
c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*a+3*I*sin(d*
x+c)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/
2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*(((a
^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)
*sin(d*x+c)+a*cos(d*x+c)+b*sin(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1
/2))/sin(d*x+c))^(1/2)*(a^2+b^2)^(1/2)*a*b-sin(d*x+c)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*s
in(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*(
(-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*a^2*(((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b
+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+a*cos(d*x+c)+b*sin(d*x+c)-a)/(a^2+b^2)^(1/2)/
sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(a^2+b^2)^(1/2)+2*sin(d*x+c)*Ellip
ticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^
2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*b^2*(((a^2+b^2
)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d
*x+c)+a*cos(d*x+c)+b*sin(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/s
in(d*x+c))^(1/2)*(a^2+b^2)^(1/2)-sin(d*x+c)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+
a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(-I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+
b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*a^2*(((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2
)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+a*cos(d*x+c)+b*sin(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c
))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(a^2+b^2)^(1/2)+2*sin(d*x+c)*EllipticPi((((
a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1
/2))/(-I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*b^2*(((a^2+b^2)^(1/2)*
sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+a*
cos(d*x+c)+b*sin(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c
))^(1/2)*(a^2+b^2)^(1/2)+2*sin(d*x+c)*EllipticF((((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+
(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*a^2*(((a^2+b^2)^(
1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+
c)+a*cos(d*x+c)+b*sin(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(
d*x+c))^(1/2)*(a^2+b^2)^(1/2)+4*sin(d*x+c)*EllipticF((((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)
/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*b^2*(((a^2+b
^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin
(d*x+c)+a*cos(d*x+c)+b*sin(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))
/sin(d*x+c))^(1/2)*(a^2+b^2)^(1/2)-2*sin(d*x+c)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x
+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a
^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*b^3*(((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+
b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+a*cos(d*x+c)+b*sin(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*
x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)-2*sin(d*x+c)*EllipticPi((((a^2+b^2)^(1/2
)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(-I*a+(a
^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*b^3*(((a^2+b^2)^(1/2)*sin(d*x+c)-a*
cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+a*cos(d*x+c)+b*
sin(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)-4*si
n(d*x+c)*EllipticF((((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^
(1/2),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*a^2*(((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-
b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+a*cos(d*x+c)+b*sin(d*x+c)-
a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*b-4*sin(d*x+c)*
EllipticF((((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),1/2
*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*b^3*(((a^2+b^2)^(1/2)*sin(d*x+c)-a*cos(d*x+c)-b*sin(d*x
+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+a*cos(d*x+c)+b*sin(d*x+c)-a)/(a^2+b
^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)+2*cos(d*x+c)*2^(1/2)*(a^
2+b^2)^(1/2)*a*b-2*cos(d*x+c)*2^(1/2)*a^3-2*cos(d*x+c)*2^(1/2)*a*b^2-2*a*b*(a^2+b^2)^(1/2)*2^(1/2)+2*2^(1/2)*a
^3+2*2^(1/2)*a*b^2)*cos(d*x+c)^2*(1/cos(d*x+c)*(a*cos(d*x+c)+b*sin(d*x+c)))^(1/2)/(a*cos(d*x+c)+b*sin(d*x+c))/
(-1+cos(d*x+c))/(cos(d*x+c)/sin(d*x+c))^(3/2)/sin(d*x+c)*2^(1/2)/(a^2+b^2)/(I*a+(a^2+b^2)^(1/2)-b)/(I*a-(a^2+b
^2)^(1/2)+b)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cot \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*tan(d*x + c) + a)^(3/2)*cot(d*x + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^(3/2)),x)

[Out]

int(1/(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}} \cot ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)**(3/2)/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral(1/((a + b*tan(c + d*x))**(3/2)*cot(c + d*x)**(3/2)), x)

________________________________________________________________________________________